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Extended self-similarity in the two-dimensional metal-insulator transition
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We show that extended self-similarity, a scaling phenomenon first observed in classical turbulent flows,
holds for a two-dimensional metal-insulator transition that belongs to the universality class of random Dirac
fermions. Deviations from multifractality, which in turbulence are due to the dominance of diffusive processes
at small scales, appear in the condensed-matter context as a large-scale, finite-size effect related to the impo-
sition of an infrared cutoff in the field theory formulation. We propose a phenomenological interpretation of
extended self-similarity in the metal-insulator transition within the framework of the ramgtomdel descrip-
tion of multifractal sets. As a natural step, our discussion is bridged to the analysis of strange attractors, where
crossovers between multifractal and nonmultifractal regimes are found and extended self-similarity turns out to
be verified as well.
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[. INTRODUCTION Itis clear ESS-I leads to ESS-II, but the converse may not
be true. The definition of ESS-II is indeed necessary to cope

The surprising observation of extended self-similaritywith the fact that at the smallest scales one expects to have
(ESS in fully developed turbulenc¢l], a hidden scaling Sy(r)~r9. Itis not difficult to prove that ESS-Il implies that
behavior which takes place in the crossover between inertiatructure functions may be written as
and dissipative ranges, has provided an empirical—and very
efficient—way of determining accurate scaling exponents of Sq(r)=cq[ f1(r) 19 fo(r) 14, 1.3
velocity structure functions. The essential assumption of the
method is that there are no anomalous corrections to Kolwhere f,(r)—1, f,(r)~r in the inertial range and(r)
mogorov’s 4/5 law, as required from the existence of a con-—r, f,(r)—1 whenr —0. At present, there is no theoretical
stant energy flux through the inertial ran@. To state in an  ynderstanding of the simple crossover behayioB) for the

explicit way what is meant by ESS, let the average structure functions in a turbulent fluid. We note, however,
. that in the slightly different context of the turbulent transport
Sq(r)=([7(X1) = 9(X2)|%) of a passive scalar, an analytical proof of ESS-I was carried
1 (T out in Ref.[5].
= lim —f dt|g(Xy,t) —0(Xp,t)| (1.2 The idea that ESS could hold for a larger class of models
T 1 Jo is supported not only by the problem of the transport of a

. . passive scalar, but also by numerical investigations of kinetic
denote theqth-order structure function, wheme=|X;—X,|  roughening6] and magnetohydrodynamic turbuler{d@. It
and v(X,t) is the velocity field. In the inertial range, the s tempting to look for ESS whenever multifractal scaling
scaling resultS(r)~r¢® holds. At smaller length scales, |aws take place, adventuring beyond the turbulence arena
where dissipation effects come into pla§,(r) loses its  where it has been observed. This is precisely the task we
power-law form. However, a plot db,(r)=In[S,(r)] versus  pursue in this work for a few additional models. Our moti-
Gp(r)=In[Sy(r)] shows in a clear way that the linear relation vation is twofold. We stress that the phenomenological de-
(o) scription of multifractality in turbulence, based on the ran-
_¢P) dom B-model approach to the Richardson cascd8g
Gplr)= Z(q) Gl +c(p.a) (1.2 suggests that ESS could be analogously found in quantum
problems such as condensed-matter localizasee Sec. )l
is reasonably verified even in the crossover towards the discurthermore, we have in mind the conjecture that several
sipative scale. Since Kolmogorov's 4/5 law predi¢®3)  multifractal systems could be mapped into specific patterns,
=1, improved evaluations from experimental data can bdikely through a field theory point of vieW9]. Here, inspi-
obtained for{(p), usinggq=3 above. Later on, it was real- ration comes from the successful applications of field theo-
ized that a refinement of ESS, referred to as “generalizedetical methods in critical phenomena, where universality
extended self-similarity,” would lead to better linear fits classes and critical properties of statistical systems at ther-
[3,4]. Actually, one finds that ifG,(r) is taken as a fixed modynamic equilibrium proved suitable for systematic study.
“reference structure function” for some arbitrany, then In analogy with the renormalization-group strategy, firmly
Gym(r)=Gy(r)—(a/n)Gy(r) satisfies to a higher degree of based on the experiment, we are now faced, thus, with the
precision a relation similar to E@1.2), with slope given now primary problem of recognizing, among the plurality of mul-
by [nZ(p) —p<(n)1/[ng(q)—qg(n)]. From now on we will  tifractal models, common features—such as ESS—that could
specify, only when necessary, the former definition of ESSe derived from some general theory. Of course, an impor-
by ESS-I while its generalized version will be named ESS-Il.tant role in this scenario is to be played by a number of
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well-established multifractal field theory models, such as the TABLE I. The scaling exponent(q) for the weak and strong
ones for random spin systenj&0], Anderson localization disorder regimes.
[11], the two-dimensional metal-insulator transitidr2—15,

hadron jets in QCI)16], etc. Structure . .
While studying some completely diverse models, we have function order  7(q) (weak disorder  7(q) (strong disorder
structured the paper to be as self-contained as possible. In the lgl=aq. 2q-1)(1-9/c) 21— q/qy)?

next section we discuss a two-dimensional metal-insulator
transition, where we respectively verify ESS-1 and ESS-II for
strong and weak disordered regimes of the cutoff field

theory. We study the transition via its modeling in terms ofjmposition of periodic boundary conditions in theandy
two-dimensional Dirac fermion§12—15. A “cascade de- (ijrections, introducing an infrared cutoff in the correspond-

scription” of the metal-insulator transition at the critical ing field theory model. The random Dirac Hamiltonian is
point is addressed, which takes us naturally to the analysis Qfiven by

strange attractors, the subject of Sec. Ill. We study then per-

haps the two most celebrated strange attractoraphiEL7] .

and LorenZz 18], collecting clear evidence for the existence H:M:Z” oul1d,= ALl (2.9)

of ESS-Il and ESS-I, respectively, in these geometrical sets. ’

In Sec. IV, we put forward an analysis of ESS in terms of thewhereA# is a random gauge field and the,’s are Pauli
randomp-model description of multifractality, which, albeit matrices.

essentially phenomenological, throws some light on the pre- The exact multifractal spectrum computed by Chamon
vious findings. In Sec. V, we comment on our results ancet al. [14,15 is obtained from the zero modes of EQ.1).

lal>ae 29[ 1-sgn@)/g.? 4(q-1al)/q

suggest directions for further research. The normalized solution dfl 4=0 is just
Al R
Il. THE TWO-DIMENSIONAL METAL-INSULATOR ho(X)=N"exd — p(X)os—ix(X)] o, (2.2
TRANSITION

The multifractal nature of delocalized states at the metalyil gere the gauge f|e’£id has been written asA,(X)
insulator transition in condensed-matter systems has been at- vty $(X) 9, x(X) an
tracting a great deal of interest in recent ygdrg]. We pro-

pose here a qualitative cascade picture to approach the N=

physics of delocalized multifractal wave functions. A more
quantitative, though phenomenploglcal, descrlptmn .of therhe random magnetic fielB(X) = — V2¢(X) is logarithmi-
“cascade picture” of the metal-insulator transition will be cally correlated, that is, its fluctuations are described by the

postponed to Sec. IV. probability density functional
Suppose that at initial time a smooth and localized wave

112
(2.3

J d?X exp(—24(X))

packet is defined, centered around an arbitrary pBirAs 1 i in2

the system evolves, quantum propagation in the disordered Pl]<exp — EJ' d*X(Ve)©|. 24
background will cause the wave packet to spread and frag-

ment, so that at very large times and very far fréta We are interested to study amplitude fluctuations of

cascade for the probability density develops, yielding a mul+/y(X), which do not depend on the phagéx). Let () be a

tifractal measure. Of course, multifractality is lost at scalessquare box of size Xr. We define now structure functions

of the order of the system’s size, where the smoothness of thef orderq as

wave function is recovered due to reflections at the bound-

aries. Such a crossover between two scaling regimes is ex- Sy(r)= J | ol 22X

pected to be found in any experiment or realistic model of e

electron localization. The above state of affairs is analogous

to the one encountered in turbulence, if the roles of infrared’he above average is computed in a quenched disorder

and ultraviolet regions are exchanged. Eddy fragmentation ischeme from the probability density functiond.4). Ac-

turbulence gives rise to an energy cascade, and dissipation@rding to the exact result§14,15 we have Sy(r)

smaller scales, where viscous effects are more important thanr["@*2] for r<L, where 7(q) is the scaling exponent

convection, renders the velocity configurations smooth. given in Table I. Strong and weak regimes are defined, re-
Our prototype for the study of the multifractal- spectively, byg.<1 andq.>1, whereq.=y2/g.

nonmultifractal crossover of probability density functions Computations were done through the Monte Carlo

will be an exactly solvable model which describes a two-method on a 608 600 lattice. The simulation consisted of

dimensional metal-insulator transition, closely related to the

one observed in the integer quantum Hall effet2—15.

The model consists of Dirac fermions moving in a box of INote that the total magnetic flux on the two-dimensional space is

size LXL under the presence of a transverse random magzero. Exact results were obtained so far only in the trivial topologi-

netic field. Deviations from multifractality follow from the cal sector.

q
) 9
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FIG. 2. ESS-I data for structure functions in the strong disorder

FIG. 1. ESS-II data for structure functions in the weak disorderregime @.=1), taking results fog=—3,—6.
regime Q.= 10), taking results fog=3,6,9.

large and fixed number dfl points homogeneously distrib-
10° Monte Carlo steps per site. The averages were taken amed in some compact region of spatke basin of attrac-
a 100x 100 sublattice. Weak and strong regimes were investion) is successively iterated, producing an approximation to
tigated, corresponding, respectively,dg=10 and 1. Here, the attractor. It is assumed a set with the same statistical
we report data forg=3,6,9 in the weak regime and properties would be generated aft¢iterations of any arbi-
g=—3,—6 in the strong regime. We considered a singletrary initial point, forN large enough. Structure functions of
realization of¢(X) for each pair €,q.) of parameters. As a orderq may be defined as
matter of fact, due to the self-averaging property of model
(2.1) [14,15, a single realization of the multifractal wave
function leads to scaling exponents identical to the ones I q
computed from quenched averages in the large box limit. Sq(r)=<n(r)q)=ﬁi§1 ]Zl 0di—-n|, @I
The numerical results are shown in Figs. 1 and 2, together
with the exact slopes for comparison. We find in a very clear

way that the weak regime is well accounted for ESS-I, whileywheren(r) is the number of points contained in a ball of

the strong regime exhibits ESS-II. radiusr, while d;; ;, is the distance between points labeled by
i andj, and®(x) is the Heaviside function. AEl— o, mul-
i i ~r¢(a) i
Il EXTENDED SELE-SIMILARITY IN STRANGE tifractality means thaSq(.r) ret9 at small scales. _Slncg the
ATTRACTORS total number of pointdN is kept constant through iterations,

the quantityn(r) is immediately recognized as the analogous
There is an element in the cascade description of multiof [,d?%||2 in the context of localization. The main differ-

fractal wave functions proposed above that brings our atterence between the dynamics of strange attractors and the evo-
tion to the self-similar structure of strange attractors: the eshution of delocalized wave functions, however, is the fact that
sential point is that the wave-function normalization isthe latter will not have a finite area support in general.
preserved throughout the cascade. This simple constraint The natural question we pose regards the corrections to
makes a bridge to the phenomenological analysis of strangde multifractal asymptotic behavior at large scales, compa-
attractors established by Benet al. [8]. In their work, a rable to the overall size of the attractor. We performed nu-
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FIG. 3. ESS-Il data for the H®n attractor, where structure
functions of orderg= 3,6 are taken into account. FIG. 4. ESS-| data for the Lorenz attractor, where structure

functions of ordelg=3,8 are taken into account.
merical experiments on the Hen and Lorenz strange attrac-
tors. The strange attractor generated by thedtiemapping X=—8(X—Y),
[17],

2 y=—Xz+rx—y,
Xn+1=1—axy+yn, Y Y

Ynr1=bX,, (3.2 z=xy—bz, (3.3

with a=1.4 andb=0.2, is fully chaotic, containing no peri- where we takes=10, b=%, andr=28. The discrete flow
odic orbits. As is well known, at certain range of scales the(x(t,),y(t,),z(t,)), which generates the strange attractor in
Henon attractor is locally like several approximately parallelthe three-dimensional phase space, is obtained using the time
stripes. At large enough scales, we may say, therefore, thatep5=0.01 andN=3000. The initial point has coordinates
the Henon attractor is roughly one-dimensional. However,x=y=0 and z=0.01. The first 2000 iterations were dis-
sweeping a considerably larger range of scales, the fractgarded. The range of scales investigated runs from the small-
substructure shows up and one gets a nontrivial fractal diest ones to the overall size of the attractor, so that we expect
mension slightly greater than unity. To study such a dimennow a crossover between a set with nontrivial scaling behav-
sional crossover, we have considered thendte mapping ior and a set of vanishing dimensidthe Lorenz attractor as
for 10° iterations, with initial pointx=y=0. We focused “viewed from the infinity”). We confirm ESS-I from Fig. 4,
our attention on the 2428 points contained in the regiorwhere the plots of5,(r)=In[S(r)] for g=3 andq=8 are
|[x—0.76<0.1,|y—0.16<0.01. Defining now the functions shown. Note thaN is not a very large number, usually the
Gy(r) =In[§(r)]—qlnr, we clearly observe, from the results condition to get good evaluations of the scaling exponents.
depicted in Fig. 3, forg=3,6 the existence of ESS-Il in The situation here is very similar to the one found in turbu-
the Henon attractor. The plateaus observed at larger valuelence, when one extracts, through ESS, scaling exponents out
of r confirm the existence of one-dimensional large-scalef low Reynold’s number data.
structures. We have material evidence, therefore, to hypothesize that
Similar computations were carried out for the Lorenz at-ESS is a property shared by other strange attractors and
tractor[18]. This dynamical system is given by the following metal-insulator transitions. It is not clear, however, under
coupled differential equations: which conditions ESS-I or strict ESS-II will hold. Next, we
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attempt a phenomenological description of ESS in generaby imposition, a regiorly; is produced, the union dfly;

under the light of randon8 models. boxes of volumesl‘lj, each one taking the same number
of Ng;=MoNy/M,y; points. We have B=a My /M,
IV. RANDOM B-MODEL ANALYSIS =a 9Ng/Ng;, which may now be larger than unity. The

. . . model is supplemented by a “splitting rulédeterministic or
The existence of ESS in multifractal systems seems t0 by 4t states whethe, is still a coherence region or if it

idntimately ;el;elted to thﬁ dynamics of fragmentatican. TEelr"’m'vvill be broken into a numbep of independent subcoherence
om g-model approach to strange attractors and turbulenCagions iy, 1 Ugyiay.... Uoxe) all of them having identi-

[8], originally devised to capture the statistical properties aStal volumes. The same procedure is then inductively re-

sociated with fragmentation events, is an interesting foundgseateq as fragmentation proceeds. If, for instance, coherence

tion from Wh'Ch to get some clues on ESS. . regions are initially split into two subregions, we get the
The multifractal set given by a strange attractor is generfollowing diagram of fragmentations:

ated, in the randons-model line of thought, from the frag-

mentation of boxes in som&dimensional phase space of a

dynamical system. At thaeth fragmentation step, a box with Uiy *°
vqumeQn=Iﬂ, containing a certain number of poirlt, ,

is dfragmented int(_) _ sub-boxes_ with  volume& 1) Uoniy— Uiy Usiiyz)
=l(n+1y, €ach containind(, . 1) points. The total volume of
the “newborn” boxes is a fractios,, (a random variableof Up— Uy
the original volume of the “parent” box. In the randog U U U
model we assume that at each step of fragmentation the new 01(2) 01(2)2 01(2)2(1)
length scale is a fixed fraction of the previous one, that is,
l(n+1y=1n/a, wherea> 1. Furthermore, the volume ratj@, Uiy
varies from box to box, without any correlation, being de-
scribed by some probability functioR(B). Since the total
number of points is conserved, we may write After n iterations, a box of vquméﬁ will contain a number
of points that is still given by Eq4.2). Since all paths in the
N, I<n+1))d fragmentation diagram have equivalent probabilistic weights
n= : (4.1 for reasonable choices of the splitting rule, it follows that
N\ In plitting ,

both Eqgs.(4.3) and (4.4) hold as well, if the number of co-
A simple relation may be obtained from E@.1) for the  herence regions is large enough to allow for statistical aver-
number of points in a box generated in the sequence of fragdging.

mentationsBo— B1—"*— Bn-1) As an application of the above ideas, we identify/N
with the box probabilityf o [#]? in condensed-matter local-
_ In ar 1 ization. Recalling the discussion of Sec. I, we reproduce the
Nn= Iy |Ho Bi (4.2 scaling exponents for the rangég>q. in the weak and

strong regimes of disorder in terms of a bifractal model. Let
Thus, we find that us takeB_<1<pB, as the volume ratios, which are gener-
ated with probabilitiesP_ and P, =1—-P_, respectively.
n)é@ When q— * o, it follows that (3”9 —P-B-%. We find
Sq(ln)=(Np)=|+ , 4.3 h : : o 1
lo that both disorder regimes correspondRe=P_=3 and
a=v2. However, the weak disorder regime gives
where

—ad— -q

{(q)=qd—loga(5~). (4.4 Iogz,[L:i(iiZ), @5
Similar arguments may be advanced for the structure func- e e
tions in turbulence, taking into account the energy cascade,
giving £(q) =q/3—log,(B*"99). while the strong disorder regime gives

Observe that for a givea>1, there is a discrete set af
possible values gB<1. In order to approach metal-insulator
transitions, we introduce a variant of the randghmodel
which allows not only a larger set @#'s, but also to have log, B-=—1, log ,3+=q—c— 1. (4.6)
B>1. In this way, statistical fluctuations of the random vari-
able B can be determined, in good approximation, from some
probability density functiorp(8) with 0<pg<c. To define The phenomenon of ESS reflects, in loose terms, the fact
the alternative model, consider the unidg of M, boxes of  that some fundamental statistical property of the self-similar
volumesld, each containindN, points. We callU, a “co-  cascade keeps holding in the crossover towards nonmulti-
herence region,” since after the first fragmentation stepfractal behavior, while a set of paramet¢ssich as the frag-
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mentation parametest or the dimensiond) evolves “adia- V. CONCLUSION

batically.” Let us assume that the probability density®is

fixed along the cascade, in the randgmodel framework. We studied infrared effects in an exactly solvable two-
We are able to establish, in this way, two independent phedimensional metal-insulator transition modeled by random
nomenological pictures that support ESS. Dirac fermions, observing in a clear way the existence of

Picture A: Target Space with Fractal DimensioVe as-  ESS-| and ESS-II, in the strong and weak disorder regimes,
sume in this case that fragmentation, initially defineddin  respectively. To our knowledge this is the first verification of
dimensions, has been gradually modified to occur in g gg for a system that is not manifestly classical. A cascade
(d/@)-dimensional space. The physical interpretationaof  gescription of the multifractal probability density profile was
>1, for instance, is that the phase space available after SOMRoposed along the lines of the randg@gmodel, in a spirit

that th bability density determining th lati b Yimilar to the usual applications performed in strange attrac-
at the probability density determining the relative numben,, o o4 yrpulence. Furthermore, we found that strange at-
of boxes generated within coherence regions is invariant, thF . .
o PR factors can in fact show ESS, from a straightforward nu-
only way to preserve the statistics @is from a modification

of the parametes, as may be inferred from Edqd.1). We merical analysis of the H®n and Lorenz dynamical

have systems.
Two independent pictures, defined within the random
Nty gy Natn g B-model approach, were put forward as possible phenom-
Bn= N, TN, (@’ (4.7) enological descriptions of ESS. A very interestii@gnd chal-

lenging problem is to check, then, if these pictures are

and, thereforea’ =a“®. Performing the substitutiod— d/« somehow realized in the multifractal systems where ESS
and a—a® in the expression(4.4), we obtain £(q) holds. We believe, however, that the next natural area of
—{(g)/ « for strange attractors or in the localization prob- research concerns the issue of ESS in other metal-insulator
lem, which implies ESS-I in these systems. transitions already known in condensed matter. It is worth

Picture B: Enhanced or Suppressed Fragmentatiorag-  mentioning that in the two-dimensional localization problem,
ine that the relative number of boxes generated within coherr(1)=£(1)—2=0 is an exact relatiof,in perfect analogy
ence regions gets a factorafter some step in the cascade with Kolmogorov's 4/5 law of turbulence. Therefore, it is
process. The fragmentation takes place didlimensional |ikely that ESS can play the same important role for the
space. As in the previous picture, the only way to keep theubject of localization that it has for turbulence, providing
probability density forg fixed is from a modification of the petter evaluations for the multifractal exponents of structure

parameterla. We have functions.
cN N
_ (n+1) _q_ "N(n+1) N—d
P=N =N, @) (4.8 ACKNOWLEDGMENTS
n n
Defining a from c=a’®~ %, we get, from Eq.(4.8), a’ This work has been partially supported by FAPERJ.

=a“. We will now have ESS-II, with the crossover functions
given by f,(r)=rdC"Y) andf,(r)=r,

An arbitrary combination of picture& andB is the most 2The exact result(1)=d in d-dimensional space follows from
general situation, leading always to ESS-II. It is interestingthe wave-function normalization and from translation invariance of
to note, in passing, that both of these pictures yield ESS-Ithe box probabilities. In the language of the randgmodel, we
for the turbulence cascade. have, according to Eq4.4), (8) 1=1.
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