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Extended self-similarity in the two-dimensional metal-insulator transition

L. Moriconi
Instituto de Fı´sica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ-21945-970, Brazil

~Received 19 May 2003; published 29 September 2003!

We show that extended self-similarity, a scaling phenomenon first observed in classical turbulent flows,
holds for a two-dimensional metal-insulator transition that belongs to the universality class of random Dirac
fermions. Deviations from multifractality, which in turbulence are due to the dominance of diffusive processes
at small scales, appear in the condensed-matter context as a large-scale, finite-size effect related to the impo-
sition of an infrared cutoff in the field theory formulation. We propose a phenomenological interpretation of
extended self-similarity in the metal-insulator transition within the framework of the randomb-model descrip-
tion of multifractal sets. As a natural step, our discussion is bridged to the analysis of strange attractors, where
crossovers between multifractal and nonmultifractal regimes are found and extended self-similarity turns out to
be verified as well.
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I. INTRODUCTION

The surprising observation of extended self-similar
~ESS! in fully developed turbulence@1#, a hidden scaling
behavior which takes place in the crossover between ine
and dissipative ranges, has provided an empirical—and v
efficient—way of determining accurate scaling exponents
velocity structure functions. The essential assumption of
method is that there are no anomalous corrections to K
mogorov’s 4/5 law, as required from the existence of a c
stant energy flux through the inertial range@2#. To state in an
explicit way what is meant by ESS, let the average

Sq~r !5^uvW ~xW1!2vW ~xW2!uq&

[ lim
T→`

1

T E
0

T

dtuvW ~xW1 ,t !2vW ~xW2 ,t !uq ~1.1!

denote theqth-order structure function, wherer 5uxW12xW2u
and vW (xW ,t) is the velocity field. In the inertial range, th
scaling resultSq(r );r z(q) holds. At smaller length scales
where dissipation effects come into play,Sq(r ) loses its
power-law form. However, a plot ofGq(r )5 ln@Sq(r)# versus
Gp(r )5 ln@Sp(r)# shows in a clear way that the linear relatio

Gp~r !5
z~p!

z~q!
Gq~r !1c~p,q! ~1.2!

is reasonably verified even in the crossover towards the
sipative scale. Since Kolmogorov’s 4/5 law predictsz(3)
51, improved evaluations from experimental data can
obtained forz(p), usingq53 above. Later on, it was rea
ized that a refinement of ESS, referred to as ‘‘generali
extended self-similarity,’’ would lead to better linear fi
@3,4#. Actually, one finds that ifGn(r ) is taken as a fixed
‘‘reference structure function’’ for some arbitraryn, then
Gq/n(r )[Gq(r )2(q/n)Gn(r ) satisfies to a higher degree o
precision a relation similar to Eq.~1.2!, with slope given now
by @nz(p)2pz(n)#/@nz(q)2qz(n)#. From now on we will
specify, only when necessary, the former definition of E
by ESS-I while its generalized version will be named ESS
1063-651X/2003/68~3!/036135~7!/$20.00 68 0361
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It is clear ESS-I leads to ESS-II, but the converse may
be true. The definition of ESS-II is indeed necessary to c
with the fact that at the smallest scales one expects to h
Sq(r );r q. It is not difficult to prove that ESS-II implies tha
structure functions may be written as

Sq~r !5cq@ f 1~r !#q@ f 2~r !#z~q!, ~1.3!

where f 1(r )→1, f 2(r );r in the inertial range andf 1(r )
;r , f 2(r )→1 whenr→0. At present, there is no theoretic
understanding of the simple crossover behavior~1.3! for the
structure functions in a turbulent fluid. We note, howev
that in the slightly different context of the turbulent transpo
of a passive scalar, an analytical proof of ESS-I was carr
out in Ref.@5#.

The idea that ESS could hold for a larger class of mod
is supported not only by the problem of the transport o
passive scalar, but also by numerical investigations of kin
roughening@6# and magnetohydrodynamic turbulence@7#. It
is tempting to look for ESS whenever multifractal scalin
laws take place, adventuring beyond the turbulence ar
where it has been observed. This is precisely the task
pursue in this work for a few additional models. Our mo
vation is twofold. We stress that the phenomenological
scription of multifractality in turbulence, based on the ra
dom b-model approach to the Richardson cascade@8#,
suggests that ESS could be analogously found in quan
problems such as condensed-matter localization~see Sec. II!.
Furthermore, we have in mind the conjecture that seve
multifractal systems could be mapped into specific patte
likely through a field theory point of view@9#. Here, inspi-
ration comes from the successful applications of field th
retical methods in critical phenomena, where universa
classes and critical properties of statistical systems at t
modynamic equilibrium proved suitable for systematic stu
In analogy with the renormalization-group strategy, firm
based on the experiment, we are now faced, thus, with
primary problem of recognizing, among the plurality of mu
tifractal models, common features—such as ESS—that co
be derived from some general theory. Of course, an imp
tant role in this scenario is to be played by a number
©2003 The American Physical Society35-1
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L. MORICONI PHYSICAL REVIEW E 68, 036135 ~2003!
well-established multifractal field theory models, such as
ones for random spin systems@10#, Anderson localization
@11#, the two-dimensional metal-insulator transition@12–15#,
hadron jets in QCD@16#, etc.

While studying some completely diverse models, we ha
structured the paper to be as self-contained as possible. I
next section we discuss a two-dimensional metal-insula
transition, where we respectively verify ESS-I and ESS-II
strong and weak disordered regimes of the cutoff fi
theory. We study the transition via its modeling in terms
two-dimensional Dirac fermions@12–15#. A ‘‘cascade de-
scription’’ of the metal-insulator transition at the critic
point is addressed, which takes us naturally to the analys
strange attractors, the subject of Sec. III. We study then
haps the two most celebrated strange attractors, He´non @17#
and Lorenz@18#, collecting clear evidence for the existen
of ESS-II and ESS-I, respectively, in these geometrical s
In Sec. IV, we put forward an analysis of ESS in terms of
randomb-model description of multifractality, which, albe
essentially phenomenological, throws some light on the p
vious findings. In Sec. V, we comment on our results a
suggest directions for further research.

II. THE TWO-DIMENSIONAL METAL-INSULATOR
TRANSITION

The multifractal nature of delocalized states at the me
insulator transition in condensed-matter systems has bee
tracting a great deal of interest in recent years@19#. We pro-
pose here a qualitative cascade picture to approach
physics of delocalized multifractal wave functions. A mo
quantitative, though phenomenological, description of
‘‘cascade picture’’ of the metal-insulator transition will b
postponed to Sec. IV.

Suppose that at initial time a smooth and localized wa
packet is defined, centered around an arbitrary pointP. As
the system evolves, quantum propagation in the disorde
background will cause the wave packet to spread and f
ment, so that at very large times and very far fromP, a
cascade for the probability density develops, yielding a m
tifractal measure. Of course, multifractality is lost at sca
of the order of the system’s size, where the smoothness o
wave function is recovered due to reflections at the bou
aries. Such a crossover between two scaling regimes is
pected to be found in any experiment or realistic model
electron localization. The above state of affairs is analog
to the one encountered in turbulence, if the roles of infra
and ultraviolet regions are exchanged. Eddy fragmentatio
turbulence gives rise to an energy cascade, and dissipati
smaller scales, where viscous effects are more important
convection, renders the velocity configurations smooth.

Our prototype for the study of the multifracta
nonmultifractal crossover of probability density functio
will be an exactly solvable model which describes a tw
dimensional metal-insulator transition, closely related to
one observed in the integer quantum Hall effect@12–15#.
The model consists of Dirac fermions moving in a box
size L3L under the presence of a transverse random m
netic field. Deviations from multifractality follow from the
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imposition of periodic boundary conditions in thex and y
directions, introducing an infrared cutoff in the correspon
ing field theory model. The random Dirac Hamiltonian
given by

H5 (
m51,2

sm@ idm2Am#, ~2.1!

where Am is a random gauge field and thesm’s are Pauli
matrices.

The exact multifractal spectrum computed by Cham
et al. @14,15# is obtained from the zero modes of Eq.~2.1!.
The normalized solution ofHc50 is just

c0~xW !5N21 exp@2f~xW !s32 ix~xW !#F10G , ~2.2!

where the gauge field1 has been written asAm(xW )
5Snemn]nf(xW)1]mx(xW) and

N5F E d2xW exp„22f~xW !…G1/2

. ~2.3!

The random magnetic fieldB(xW )52¹2f(xW ) is logarithmi-
cally correlated, that is, its fluctuations are described by
probability density functional

P@f#}expS 2
1

2g E d2xW~¹W f!2D . ~2.4!

We are interested to study amplitude fluctuations
c0(xW ), which do not depend on the phasex(xW ). Let V be a
square box of sizer 3r . We define now structure function
of orderq as

Sq~r !5K F E
V

uc0u2d2xW GqL . ~2.5!

The above average is computed in a quenched diso
scheme from the probability density functional~2.4!. Ac-
cording to the exact results@14,15# we have Sq(r )
;r @t(q)12# for r !L, where t(q) is the scaling exponen
given in Table I. Strong and weak regimes are defined,
spectively, byqc<1 andqc.1, whereqc5A2p/g.

Computations were done through the Monte Ca
method on a 6003600 lattice. The simulation consisted o

1Note that the total magnetic flux on the two-dimensional spac
zero. Exact results were obtained so far only in the trivial topolo
cal sector.

TABLE I. The scaling exponentt(q) for the weak and strong
disorder regimes.

Structure
function order t(q) ~weak disorder! t(q) ~strong disorder!

uqu<qc 2(q21)(12q/qc
2) 22(12q/qc)

2

uqu.qc 2q@12sgn(q)/qc#
2 4(q2uqu)/qc
5-2
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EXTENDED SELF-SIMILARITY IN THE TWO- . . . PHYSICAL REVIEW E 68, 036135 ~2003!
103 Monte Carlo steps per site. The averages were taken
a 1003100 sublattice. Weak and strong regimes were inv
tigated, corresponding, respectively, toqc510 and 1. Here,
we report data forq53,6,9 in the weak regime an
q523,26 in the strong regime. We considered a sing
realization off(xW ) for each pair (q,qc) of parameters. As a
matter of fact, due to the self-averaging property of mo
~2.1! @14,15#, a single realization of the multifractal wav
function leads to scaling exponents identical to the o
computed from quenched averages in the large box lim
The numerical results are shown in Figs. 1 and 2, toge
with the exact slopes for comparison. We find in a very cl
way that the weak regime is well accounted for ESS-I, wh
the strong regime exhibits ESS-II.

III. EXTENDED SELF-SIMILARITY IN STRANGE
ATTRACTORS

There is an element in the cascade description of mu
fractal wave functions proposed above that brings our at
tion to the self-similar structure of strange attractors: the
sential point is that the wave-function normalization
preserved throughout the cascade. This simple const
makes a bridge to the phenomenological analysis of stra
attractors established by Benziet al. @8#. In their work, a

FIG. 1. ESS-II data for structure functions in the weak disor
regime (qc510), taking results forq53,6,9.
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large and fixed number ofN points homogeneously distrib
uted in some compact region of space~the basin of attrac-
tion! is successively iterated, producing an approximation
the attractor. It is assumed a set with the same statis
properties would be generated afterN iterations of any arbi-
trary initial point, forN large enough. Structure functions o
orderq may be defined as

Sq~r !5^n~r !q&5
1

N (
i 51

N F (
j 51

N

Q„d~ i , j !2r …Gq

, ~3.1!

where n(r ) is the number of points contained in a ball
radiusr, while d( i , j ) is the distance between points labeled
i and j, andQ(x) is the Heaviside function. AsN→`, mul-
tifractality means thatSq(r );r z(q) at small scales. Since th
total number of pointsN is kept constant through iterations
the quantityn(r ) is immediately recognized as the analogo
of *Vd2xW ucu2 in the context of localization. The main differ
ence between the dynamics of strange attractors and the
lution of delocalized wave functions, however, is the fact th
the latter will not have a finite area support in general.

The natural question we pose regards the correction
the multifractal asymptotic behavior at large scales, com
rable to the overall size of the attractor. We performed n

r
FIG. 2. ESS-I data for structure functions in the strong disor

regime (qc51), taking results forq523,26.
5-3
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L. MORICONI PHYSICAL REVIEW E 68, 036135 ~2003!
merical experiments on the He´non and Lorenz strange attra
tors. The strange attractor generated by the He´non mapping
@17#,

xn11512axn
21yn ,

yn115bxn , ~3.2!

with a51.4 andb50.2, is fully chaotic, containing no peri
odic orbits. As is well known, at certain range of scales
Hénon attractor is locally like several approximately paral
stripes. At large enough scales, we may say, therefore,
the Hénon attractor is roughly one-dimensional. Howev
sweeping a considerably larger range of scales, the fra
substructure shows up and one gets a nontrivial fractal
mension slightly greater than unity. To study such a dim
sional crossover, we have considered the He´non mapping
for 105 iterations, with initial pointx5y50. We focused
our attention on the 2428 points contained in the reg
ux20.76u,0.1, uy20.16u,0.01. Defining now the functions
Gq(r )5 ln@Sq(r)#2q ln r, we clearly observe, from the resul
depicted in Fig. 3, forq53,6 the existence of ESS-II in
the Hénon attractor. The plateaus observed at larger va
of r confirm the existence of one-dimensional large-sc
structures.

Similar computations were carried out for the Lorenz
tractor@18#. This dynamical system is given by the followin
coupled differential equations:

FIG. 3. ESS-II data for the He´non attractor, where structur
functions of orderq53,6 are taken into account.
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ẋ52s~x2y!,

ẏ52xz1rx2y,

ż5xy2bz, ~3.3!

where we takes510, b5 8
3 , and r 528. The discrete flow

„x(tn),y(tn),z(tn)…, which generates the strange attractor
the three-dimensional phase space, is obtained using the
stepd50.01 andN53000. The initial point has coordinate
x5y50 and z50.01. The first 2000 iterations were dis
carded. The range of scales investigated runs from the sm
est ones to the overall size of the attractor, so that we ex
now a crossover between a set with nontrivial scaling beh
ior and a set of vanishing dimension~the Lorenz attractor as
‘‘viewed from the infinity’’!. We confirm ESS-I from Fig. 4,
where the plots ofGq(r )5 ln@Sq(r)# for q53 andq58 are
shown. Note thatN is not a very large number, usually th
condition to get good evaluations of the scaling expone
The situation here is very similar to the one found in turb
lence, when one extracts, through ESS, scaling exponent
of low Reynold’s number data.

We have material evidence, therefore, to hypothesize
ESS is a property shared by other strange attractors
metal-insulator transitions. It is not clear, however, und
which conditions ESS-I or strict ESS-II will hold. Next, w

FIG. 4. ESS-I data for the Lorenz attractor, where struct
functions of orderq53,8 are taken into account.
5-4
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attempt a phenomenological description of ESS in gene
under the light of randomb models.

IV. RANDOM b-MODEL ANALYSIS

The existence of ESS in multifractal systems seems to
intimately related to the dynamics of fragmentation. The r
dom b-model approach to strange attractors and turbule
@8#, originally devised to capture the statistical properties
sociated with fragmentation events, is an interesting foun
tion from which to get some clues on ESS.

The multifractal set given by a strange attractor is gen
ated, in the randomb-model line of thought, from the frag
mentation of boxes in somed-dimensional phase space of
dynamical system. At thenth fragmentation step, a box wit
volumeVn5 l n

d , containing a certain number of pointsNn ,
is fragmented into sub-boxes with volumesV (n11)

5 l (n11)
d , each containingN(n11) points. The total volume of

the ‘‘newborn’’ boxes is a fractionbn ~a random variable! of
the original volume of the ‘‘parent’’ box. In the randomb
model we assume that at each step of fragmentation the
length scale is a fixed fraction of the previous one, that
l (n11)5 l n /a, wherea.1. Furthermore, the volume ratiobn
varies from box to box, without any correlation, being d
scribed by some probability functionP(b). Since the total
number of points is conserved, we may write

bn5
Nn

N~n11!
S l ~n11!

l n
D d

. ~4.1!

A simple relation may be obtained from Eq.~4.1! for the
number of points in a box generated in the sequence of f
mentationsb0→b1→¯→b (n21) ,

Nn5S l n

l 0
D d

)
i 50

n21

b i
21. ~4.2!

Thus, we find that

Sq~ l n!5^Nn
q&5S l n

l 0
D z~q!

, ~4.3!

where

z~q!5qd2 loga^b
2q&. ~4.4!

Similar arguments may be advanced for the structure fu
tions in turbulence, taking into account the energy casca
giving z(q)5q/32 loga^b

(12q/3)&.
Observe that for a givena.1, there is a discrete set ofad

possible values ofb<1. In order to approach metal-insulato
transitions, we introduce a variant of the randomb model
which allows not only a larger set ofb’s, but also to have
b.1. In this way, statistical fluctuations of the random va
ableb can be determined, in good approximation, from so
probability density functionr~b! with 0<b,`. To define
the alternative model, consider the unionU0 of M0 boxes of
volumesl 0

d , each containingN0 points. We callU0 a ‘‘co-
herence region,’’ since after the first fragmentation st
03613
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by imposition, a regionU01 is produced, the union ofM01

boxes of volumesl 1
d , each one taking the same numb

of N015M0N0 /M01 points. We have b5a2dM01/M0
5a2dN0 /N01, which may now be larger than unity. Th
model is supplemented by a ‘‘splitting rule’’~deterministic or
not! that states whetherU01 is still a coherence region or if i
will be broken into a numberp of independent subcoherenc
regionsU01(1) ,U01(2) ,...,U01(p) , all of them having identi-
cal volumes. The same procedure is then inductively
peated as fragmentation proceeds. If, for instance, coher
regions are initially split into two subregions, we get th
following diagram of fragmentations:

After n iterations, a box of volumel n
d will contain a number

of points that is still given by Eq.~4.2!. Since all paths in the
fragmentation diagram have equivalent probabilistic weig
for reasonable choices of the splitting rule, it follows th
both Eqs.~4.3! and ~4.4! hold as well, if the number of co-
herence regions is large enough to allow for statistical av
aging.

As an application of the above ideas, we identifyNn /N
with the box probability*Vn

ucu2 in condensed-matter local
ization. Recalling the discussion of Sec. II, we reproduce
scaling exponents for the rangesuqu@qc in the weak and
strong regimes of disorder in terms of a bifractal model. L
us takeb2,1,b1 as the volume ratios, which are gene
ated with probabilitiesP2 and P1512P2 , respectively.
When q→6`, it follows that ^b2q&→P7b7

2q . We find
that both disorder regimes correspond toP15P25 1

2 and
a5&. However, the weak disorder regime gives

log2 b65
1

qc
S 1

qc
62D , ~4.5!

while the strong disorder regime gives

log2 b2521, log2 b15
4

qc
21. ~4.6!

The phenomenon of ESS reflects, in loose terms, the
that some fundamental statistical property of the self-sim
cascade keeps holding in the crossover towards nonm
fractal behavior, while a set of parameters~such as the frag-
5-5
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L. MORICONI PHYSICAL REVIEW E 68, 036135 ~2003!
mentation parametera or the dimensiond! evolves ‘‘adia-
batically.’’ Let us assume that the probability density ofb is
fixed along the cascade, in the randomb-model framework.
We are able to establish, in this way, two independent p
nomenological pictures that support ESS.

Picture A: Target Space with Fractal Dimension. We as-
sume in this case that fragmentation, initially defined ind
dimensions, has been gradually modified to occur in
(d/a)-dimensional space. The physical interpretation ofa
.1, for instance, is that the phase space available after s
cascade iterations became relatively smaller. Conside
that the probability density determining the relative numb
of boxes generated within coherence regions is invariant,
only way to preserve the statistics ofb is from a modification
of the parametera, as may be inferred from Eq.~4.1!. We
have

bn5
N~n11!

Nn
a2d5

N~n11!

Nn
~a8!2d/a ~4.7!

and, therefore,a85aa. Performing the substitutiond→d/a
and a→aa in the expression~4.4!, we obtain z(q)
→z(q)/a for strange attractors or in the localization pro
lem, which implies ESS-I in these systems.

Picture B: Enhanced or Suppressed Fragmentation. Imag-
ine that the relative number of boxes generated within coh
ence regions gets a factorc after some step in the cascad
process. The fragmentation takes place ind-dimensional
space. As in the previous picture, the only way to keep
probability density forb fixed is from a modification of the
parametera. We have

bn5
cN~n11!

Nn
a2d5

N~n11!

Nn
~a8!2d. ~4.8!

Defining a from c[ad(12a), we get, from Eq.~4.8!, a8
5aa. We will now have ESS-II, with the crossover function
given by f 1(r )5r d(121/a) and f 2(r )5r 1/a.

An arbitrary combination of picturesA andB is the most
general situation, leading always to ESS-II. It is interest
to note, in passing, that both of these pictures yield ES
for the turbulence cascade.
li
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-
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V. CONCLUSION

We studied infrared effects in an exactly solvable tw
dimensional metal-insulator transition modeled by rand
Dirac fermions, observing in a clear way the existence
ESS-I and ESS-II, in the strong and weak disorder regim
respectively. To our knowledge this is the first verification
ESS for a system that is not manifestly classical. A casc
description of the multifractal probability density profile wa
proposed along the lines of the randomb model, in a spirit
similar to the usual applications performed in strange attr
tors and turbulence. Furthermore, we found that strange
tractors can in fact show ESS, from a straightforward n
merical analysis of the He´non and Lorenz dynamica
systems.

Two independent pictures, defined within the rando
b-model approach, were put forward as possible pheno
enological descriptions of ESS. A very interesting~and chal-
lenging! problem is to check, then, if these pictures a
somehow realized in the multifractal systems where E
holds. We believe, however, that the next natural area
research concerns the issue of ESS in other metal-insu
transitions already known in condensed matter. It is wo
mentioning that in the two-dimensional localization proble
t(1)5j(1)2250 is an exact relation,2 in perfect analogy
with Kolmogorov’s 4/5 law of turbulence. Therefore, it
likely that ESS can play the same important role for t
subject of localization that it has for turbulence, providin
better evaluations for the multifractal exponents of struct
functions.
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